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Three-dimensional cellular convection concentrates magnetic flux into ropes when the 
magnetic Reynolds number is large. Amplification of the magnetic field is limited by 
the Lorentz force and the maximum field in a flux rope can be estimated. Boundary- 
layer analysis yields a completely self-consistent, solution for a model of convection 
driven by imposed horizontal temperature gradients, and the transition from a 
kinematic to a dynamic regime can be followed in detail. The maximum value of the 
amplified field is proportional to the square root of the ratio of the viscous to the 
magnetic diffusivity. 

1. Introduction 
The interaction between magnetic fields and cellular convection is actually observed 

in the sun, where photospheric granules concentrate the flux into regions with intense 
local magnetic fields. Such flux ropes are likely to be formed in any stellar or planetary 
dynamo that is driven by convection. When the total flux is small concentration is 
limited by diffusion but stronger fields exert forces which oppose the concentration. 
I n  this paper we establish that the amplified magnetic field reaches a maximum 
during the transition from a kinematic to a dynamic regime and find the value of this 
maximum. 

We consider convection in an electrically conducting Boussinesq fluid with an ex- 
ternally imposed magnetic field. In  the kinematic regime the Lorentz force is negligible 
and the magnetic field is determined by the induction equation. For persistent con- 
vection wibh a typical velocity U and length scale L,  the magnetic Reynolds number 

R, = uL/r ,  (1 .1 )  

where 7 is the magnetic diffusivity. If R, B 1 magnetic flux is eventually expelled 
from the convective eddies and concentrated into ropes between them (Parker 1963; 
Clark 1965, 1966; Weiss 1966, 1977; Clark & Johnson 1967; Busse 1975); for three- 
diniensional flow the peak field in the ropes 

B* N R,B,, (1.2) 

where B, is the average field in the absence of motion. If B, is sufficiently large the 
Lorentz force can no longer be neglected; in this dynamic regime the induction equation 
is coupled to the equation of motion and they must be solved together. 

9-2 
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Nonlinear magnetoconvection has been studied in two idealized configurations. I n  
the Oberbeck problem convection is driven in a plane layer by maintaining horizontal 
temperature gradients at, say, its lower boundary; in the Rayleigh-BBnard problem 
motion is produced by an imposed vertical temperature gradient. Busse (1 975) showed 
for weak two-dimensional Rayleigh-BBnard convection that B* could increase with- 
out limit if the ratio of the viscous to the magnetic diffusivity was sufficiently large. 
This result has been confirmed by numerical experiments on two-dimensional con- 
vection (Peckover & Weiss 1978; Weiss 1975) and on axisymmetric convection in 
a cylindrical cell (Galloway & Moore 1978). These computations refute the old 
conjecture that B* is limited by the equipartition field 

Be = (PPP u, (1.3) 

where ,u is the permeability and p the density. 
This paper is principally concerned with flux ropes formed by three-dimensional 

flow converging to an axis. I n  the next section we formulate an idealized model prob- 
lem with axisymmetric convection in a cylindrical cell. When R, is large nearly all 
the flux is concentrated on the axis. The field generates a counter-flow and when this 
is of the same order as the original flow towards the axis B* attains a maximum. A 
simple one-dimensional treatment is described in 0 3. Fortunately the Oberbeck 
problem is amenable to analysis by boundary-layer theory and matched asymptotic 
expansions. Provided that both the Reynolds number 

and the P6clet number Pe = U L / K  

are small (where K and v are the thermal and viscous diffusivities) a self-consistent 
solution for the magnetic field, the vorticity and the velocity can be obtained in closed 
form. The transition from a kinematic to a dynamic regime can be followed exactly 
and the maximum value of B" can be calculated. This analysis, which forms the core 
of the paper, is carried out in $4. A similar solution for the Rayleigh-BBnard problem, 
in a restricted parameter range, exhibits interesting features of subcritical convection 
(Proctor & Galloway 1978); the axisymmetric configuration produces a greater 
variety of behaviour than the two-dimensional problem studied by Busse (1975). The 
two-dimensional Oberbeck problem, where flux is concentrated into sheets, is con- 
sidered briefly in $ 5, though it proves less suited to analysis. Finally, we summarize 
the results and their relevance to astrophysical convection. The maximum value B, of 
the peak field B* in the flux rope is attained when B, reaches a critical value that 
depends only weakly on the applied temperature gradient. For two-dimensional flow 
this occurs when Ohmic dissipation in the flux rope becomes comparable with viscous 
dissipation in the convection cell, and 

and Ohmic dissipation does not become important until B, is somewhat greater. 
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2. Formulation of the problem 

B and the velocity u satisfy the equations 
For steady convection in a Boussinesq fluid the temperature T, the magnetic field 

-U.VT+KVZT = 0, (2.1) 

V A ( U A B ) + ~ V ~ B  = 0 (2.2) 

and -po(u.V)u-VP+pg+j A B+p0vV2u = 0, (2.3) 

where P = Po 11 - a(T - Toll (2.4) 

and V . U  = 0, V.B = 0. (2.5) 

Here po and To are constants, g is the gravitational acceleration and a the coefficient 
of thermal expansion, while the electric current j = p-1V A B. Taking the curl of (2.3) 
eliminates the pressure P and yields the equation 

v A (U A W )  -avT A g +pO1v A (j A B) + V V ~ W  = 0 (2.6) 

for the vorticity w = V A u. 
We adopt cylindrical polar co-ordinates ( r ,  q5, z )  and assume that both the magnetic 

field and the velocity are purely meridional and symmetric about the vertical ( z )  axis. 
Then it is convenient to introduce a Stokes flux function x and a Stokes stream function 

while the electric current and vorticity are purely azimuthal, so that 

j = Ij( = - (pr)-lD2~, w = 1 0 1  = -r-lDz@, (2.8) 

where the Stokes operator 0 2  = r 

Then (2.1)) (2.2) and (2.6) reduce to 

and (2.12) 

We consider convection within the cylinder (0 < r < r,; 0 < z < d )  and assume the 
simplest boundary conditions. The normal velocity and the tangential stress vanish 
on all the boundaries, the total flux is fixed and equal to that for a uniform vertical 
field B,, while the tangential Maxwell stress vanishes at  z = 0, d. Hence the radial 
component of B is zero on all the boundaries, though field lines are free to move along 
the horizontal boundaries. Thus 

@ = 0, w = 0 ( r  = O,ro;z  = O,d) ,  (2.13a) 

x = 0 ( r  = 0), x = iB,rE ( r  = y o ) ,  ax/az = 0 ( z  = 0,d) .  (2.13b) 
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We assume t.hat the temperature is prescribed on the upper and lower boundaries 
and that there is no heat flow across the curved cylindrical boundary, so that 

T = To ( z  = d ) ,  T = T0+AT7(r) (z = 0), (2.14a) 

aT/ar = 0 ( P  = O,ro) ,  (2.14 b )  

where AT is a measure of the imposed temperature difference. For the Oberbeck 
problem 7 is some prescribed function of order unity such that dr ldr  = 0 at r = r 0, * 

for the Rayleigh-B6nard problem T = 1. Let L be a typical length scale, related to 
the depth or radius of the convection cell. Then a particular configuration is defined 
by four dimensionless parameters: the Rayleigh number 

R = g d T L 3 / ~ v ,  (2.15) 

the Chandrasekhar number Q = B i L 2 / p p ~ v ,  (2.16) 

which is the square of the Hartmann number, the Prandtl number 

P1= V / K  

and the magnetic Prandtl number p ,  = v/q. 

(2.17) 

(2.18) 

It is also convenient to define a further ratio 

P3 = P2/Pl = K / T  (2.19) 

In  most of the ensuing discussion we shall assume that K 9 7 (p3  1 )  in order that 
any thermal boundary layers will be much thicker than the corresponding magnetic 
layers. In  addition it is technically convenient to assume that p ,  9 1 ,  so that Re = O( 1 )  
and there are no viscous boundary layers. The first assumption holds for laminar flow 
in many stellar situations, though the second is unrealistic; it  is not obvious how the 
corresponding turbulent diffusivities should be calculated. 

3. The central flux rope 
The nonlinear equations (2.10)-( 2.12) are analytically intractable, though they 

have been solved numerically for the Rayleigh-B6nard problem (Galloway 1977; 
Galloway & Moore 1978). The results of these numerical experiments may be sum- 
marized as follows. In  the kinematic regime, when the magnetic torque in (2.12) is 
small, flux is expelled from most of the convecting region and concentrated at  the 
axis and periphery of the cell. To fix the magnetic Reynolds number, defined by (1 .  l ) ,  
we choose U to be the maximum vertical velocity at  the axis and L to be the radius r,, 
which is of the same order as the depth d .  For R, 1 nearly all the flux is contained 
in a rope of radius erO(E < I )  at the axis, where E R;t. The field has a Gaussian profile 
and its peak value B* N B , / E ~ .  As B, is increased (holding R constant) the Lorentz 
force generates vorticity with the opposite sense to that produced by the buoyancy 
force, and so reduces the radial inflow towards the axis. Figure 1 shows an example 
of the streamlines and lines of force in the dynamic regime. Magnetic flux is expelled 
from the toroidal eddy and the motion is excluded from the central flux rope. However, 
the velocity is affected only in a narrow region around the axis and the convective 
heat transport is scarcely changed. For yet larger values of B, the flux rope expands 
until it fills the cell and convection is ultimately suppressed. 
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FIGURE 1.  ( a )  Streamlines and ( b )  lines of force for the Rayleigh-B6nard problem in the dynamic 
regime. For this case R = 13150, Q = 100, p ,  = 1 ,  p 3  = 10 and the radius-to-depth ratio is $. 

We can show analytically that, provided that the magnetic Reynolds number is 
large, flux is concentrated almost entirely at  the axis of the cell, both in the kinematic 
and in the dynamic regime. The induction equation (2.11) can be expressed in the 
form 

Integrating this equation over the volume of the cell and applying the divergence 
theorem, we find that 

(3.1) v . [r2V(x/rZ] = 7 - v .  [xu]. 

since both ax/& and the normal velocity vanish on the boundaries. Now the average 
field on the outer boundary is 

(3.3) 
- i d a y  
B = q S , $ l  r=ro 

and the total flux through the cylinder .rrrEB, = 27q(rO,  2). Hence, from (3.2), 

B = B,, (3.4) 

i.e. in a steady state the average field at the outer boundary is unaffected by the motion 
(provided that the radial component of the field vanishes at z = 0,  d ) .  This remarkable 
result can be extended to fields with azimuthal components too but does not hold unless 
the field is axisymmetric; some related arguments were advanced by, for example, 
Spitzer (1957). In  a rotating fluid, conservation of angular momentum yields an 
equation analcgous to (3.1). The vorticity behaves like a magnetic field and the 
corresponding result is obvious. 

From (3.4) it  follows that nearly all the magnetic flux is concentrated into a rope 
at  the axis. For R, $- 1 the ma,gnetic field vanishes except in the immediate vicinity 
of streamlines that meet the boundary (cf. Batchelor 1956). At these streamlines 
ropes or sheets are formed. Thus flux is concentrated either into a central column or 
into a sheet a t  the outer boundary or into a sheet separating two adjacent eddies. 
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We assume that the region (0 Q r Q r,} is occupied by a single eddy. Then if R, is 
sufficiently large the field must be confined to boundary layers a t  r = 0, r,. At the 
centre there will be a rope of radius Er, while at  the periphery there will be an annular 
region with thickness of order erg, where e - R$ (cf. Weiss 1966). The fraction of the 
total flux contained in the outer annulus is of order criB/rtBo N R;&. As R,+m 
this fraction becomes negligible. Nearly all the flux is therefore concentrated into a 
central flux rope with radius of order RGhr, and a field B i: N R, B,. 

We next have to consider the effect of this flux rope on convection. The behaviour 
of the numerical solutions suggests that the transition from a kinematic to a dynamic 
regime can be investigated by boundary-layer techniques, Moreover, nonlinear ad- 
vection of vorticity does not seem to be important for this problem (Jones, Moore & 
Weiss 1976; Peckover & Weiss 1978). We shall assume therefore that p ,  B 1, so that 
the Reynolds number Re Q 1 and the first term in (2.12) may be ignored. Although 
our treatment is formally valid only for small Re we expect that the form of our 
asymptotic results will hold for high Reynolds numbers too. 

Equation (2.12) can be rewritten as 

1 gaaT 1 
- 0 2 ( r w )  = ----B.Vj. 
r v ar pov (3.5) 

This equation is linear in w :  the vorticity is generated by the two source terms on 
the right-hand side, which may be considered separately. The radial temperature 
gradient produces an eddy with velocity uo and vorticity w,, while the magnetic 
torque drives a, counter-rotating eddy with velocity u1 and vorticity wl, where 

I gaaT i 1 

r v ar' r P O V  
-D2(rw0) = -- - D2(rw,)  = -- B . Vj. 

The transition from a kinematic to a dynamic regime occurs as lull becomes com- 
parable to /uoI on the axis. From figure 1 it is clear that the magnetic torque can be 
regarded as concentrated in a current sheath of radius cro about, the axis and the 
lefbhand side of ( 3 . 6 b )  is dominated by the radial derivatives; on the right-hand side 

As a preliminary to the boundary-layer analysis in 5 4 we consider a one-dimensional 
model in which all vertical variations are ignored. This simple problem can readily be 
solved to yield the asymptotic behaviour of the field. 

For the one-dimensional problem it is convenient to take ro as the unit of length. 
In  the rest of this section we use a dimensionless radius r' = r/ro and suppress the 
prime. Vorticity is generated by the thermal plumes at  the axis and periphery of the 
cell. We suppose that K 9 7, so that the temperature variation has a scale much greater 
than E ,  and that the thermal field produces a vertical velocity &(r)  with &(O) = U > 0. 
Let the Lorentz force drive a vertical velocity V,(r). To calculate V, we first obtain the 
Green's function u ( r )  that satisfies 
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then find the corresponding velocity v ( r )  and stream function $(r) such that 
w = -dv /dr  and v = r-ld$/dr. From (2.13) the appropriate boundary conditions are 

$ ( O )  = $(l) = 0, w ( 0 )  = w(1)  = 0. (3.9) 

This problem can readily be solved. At the axis the velocity 

V = v ( O )  = -~ -52[~Ins l -~ ( l - e2 ) ]  + -&2Ilnsl (3.10) 

when -5 < 1. Then 

while the vorticity 

( 3 . 1 2 ~ )  

(3.12 b) 

where the higher-order terms are retained to ensure continuity a t  r = E .  This simplified 
analysis shows that the maximum vorticity 

w* = V/~llnel (3.13) 

occurs at  r = E .  The corresponding velocity extends across the entire cell and reverses 
its direction only near the centre, for v(r )  = 0 when r = 0.55. However, examination 
of (3 .11)  reveals that v is small unless r 5 -5: for instance v(1) + V/(4Iln-51) < V .  
Thus a localized current distribution, like that in (3.7), drives a velocity which is 
strongly concentrated near the axis, provided that llnsl 9 1. This important logarith- 
mic term appears because the axis is a singular point and it cannot be derived by any 
simple dimensional argument. 

Kinematic amplification is halted when IK(0)l is comparable with U .  We shall 
later confirm that this corresponds to a local maximum of the field B* in the flux 
rope. The maximum value B, of B* can be estimated as follows. At the axis the 
dimensionless Lorentz force generates a velocity 

(3.14) 

from (3.6b), (3.7) and (3.10). Hence 

Now E N R$ and so, provided that In R, 9 1, 

(3.16) 
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The corresponding value of the imposed field B, satisfies 
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Bi N (r/c’)2Bt, N ~Pov~/lnRrn, (3.17) 

so that B* is a maximum when Q N l/lnR,. (3.18) 

Thus the value of Q for which the concen-trated field is a maximum depends only 
weakly on the Rayleigh number, through the logarithm in the denominator. These 
results have been derived for a top-hat profile of the magnetic field in the flux rope 
but the Green’s function of (3.12) could be used to calculate B, for a Gaussian profile 
and (3.16) would be unaffected. Instead of pursuing this we shall solve an axisym- 
metric problem properly in the next section. 

4. A boundary-layer analysis of the Oberbeck problem 
4.1. The model 

I n  this section we present a model of magnetic convection which permits an analytical 
description of the structure of the flux rope. The principal simplifying assumption is 
that this flux rope is ‘thin’. The model yields an explicit expression for the peak field 
over a wide range of values of the magnetic flux, as well as a quantitative description 
of the transition from a kinematic to a nonlinear dynamic regime. These results provide 
some justification for the one-dimensional theory discussed in 3 3. 

We shall investigate the Oberbeck problem defined in 5 2. We suppose that the 
PBclet number P e  is vanishingly small and that the Reynolds number Re < 1 but 
that the magnetic Reynolds number R, 9 i ; these assumptions imply that p 2 ,  p ,  9 1. 
Then the temperature field is unaffected by the motion and the nonlinear inertial 
term can be neglected in (2.12). In  the kinematic regime there is a basic flow which 
concentrates the magnetic field in a flux rope on the axis; from (2.12) the character- 
istic speed U is proportional to the horizontal temperature gradient a t  the base of the 

(4.1) 
cylinder, so that U N gaATri/v. 

In  the dynamic regime this flow is modified by the magnetic field. To study this 
process we use boundary-layer theory and the method of matched asymptotic ex- 
pansions. The analysis is rendered tractable by the geometrical structure of the rope; 
the axis is a singular point of the equations and this makes all the difference between 
axisymmetric and two-dimensional magnetoconvection. 

We consider the interior of a cylinder of radius r,, = Ly, where y is a prescribed 
constant of order unity introduced for subsequent convenience (see 5 4.5 below). A 
temperature Tb = To + ATr(r/L) is prescribed a t  z = 0; r is so chosen that fluid rises 
a t  the axis and drldr = 0 at r = yo but can otherwise be quite general. Since the thermal 
diffusivity is large the temperature field in the cylinder satisfies 

V2T = 0, ( 4 . 2 ~ )  

aT/ar = 0 ( r  = r,), T = To ( z  = d ) ,  T = Tb (z  = 0 )  (4.2b) 

[cf. (2.10) and (2.14)]. This equation is solved by some axisymmetric temperature 

T(r, 2) = To + ATe(r/L, z /L) ,  (4.3) 
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where 8 depends on 7. If this temperature distribution is substituted into the vorticity 
equation (2.12) and the equations are non-diniensionalized by writing 

( r ,z )  = L(r ' , z ' ) ,  d = L d ' ,  u = ( g a A T U / v ) u ' ,  B = BOB', (4.4) 

we obtain (after dropping primes) the system 

( 4 . 5 ~ )  

u . VX = Rkl D2x. (4.5b) 

The magnetic Reynolds number is now an external parameter given by 

R,,$ = g a A T L 3 / v y  (4.6) 

and Q is supposed to be of order unity. Precise bounds on Q that ensure the validity 
of the analysis will be given below in Q 4.4. 

1 we may approach the problem by noting that the magnetic field is 
confined to a thin flux rope at the axis, with thickness of order R;*. The structure of 
the rope can be obtained exactly (to leading order in R,) for any velocity field in the 
cell; the solution can then be used to find the vorticity generated in the rope by the 
Lorentz force, and thus the modification to the basic flow caused by the rope's pre- 
sence. We can then obtain an analytical expression for the magnetic field as a function 
of Q and R,,,. Use of the principle of matched asymptotic expansions leads us to dis- 
tinguish between an 'inner solution' (the rope) described in terms of the stretched 

Vi'hen R, 

variable 5 = Rir  (4.7) 

and an 'outer solution' where the field is negligible and all length scales are of order 
unity. 

4.2. T h e  inner solution 

It is convenient to separate the velocity field u into two parts, as was done in 9 3. 
We set $ = $o+$l, where, from (2.8) and (4.5a),  $o, the stream function of the 
basic flow, satisfies 

with the appropriate boundary conditions (2 .13a) ,  while 
field due to t,he Lorentz force alone, so that 

r-1D2(D2$o) = - M / a r  (4.8) 

describes the velocity 

The simplicity of this separation derives from the neglect of the inertial forces. It can 
be shown, though, that a similar qualitative picture appears even for Re of order unity. 
Note that this separation cannot be achieved in (4.5b) since the sum uo + u1 appears 
there as a coeficient in the equation, thereby giving the problem its nonlinear character. 
We now suppose that near the axis r = 0 the stream function $(r ,  z )  - ir2f ( 2 )  +o(r2) 
and that f (2) is of order unity; this implies a (very modest) restriction on Q which will 
be given later. Thus f ( z )  is the vertical velocity a t  the axis, and as before we set 
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f=fo+fi ,  where f o  is known from (4.8). From (2.13), f(0) =f”(O) = 0. Rewriting 
(4.5b) in terms of 5, and retaining only terms of leading order in R;&, we obtain 

(4.10) 

together with the boundary conditions 

ax/az = o ( z  = 0). ( 4 . 1 1 ~ )  

Conditions (4.11 a,  b )  imply that all the flux is concentrated in the rope, as proved in 
Q 3. The boundary condition at  z = d cannot be satisfied by this equation, since 
f ( d )  = 0 and the flux rope spreads out to fill the cell (cf. figure 1). There is in fact a 
horizontal boundary layer a t  z = d produced by the radial outflow, which allows the 
flux lines to emerge vertically from the cell. However, t’he vorticity generated in this 
layer is small compared with that produced by the rope on the axis. We may therefore 
ignore the upper boundary layer: the unique solution of the parabolic equation (4.10) 
subject to the boundary conditions (4.11) is then 

X ( 5 )  2) = xo 11 - exp ( - &cr”l> (4.12) 

where (I = tP4, Pk) = f /% (4.13) 

which is valid as long as d - z 9 R$. Thus the flux rope is Gaussian in cross-section 
throughout its length. The important function p ( z )  is directly related to the magnetic 
field B* on the axis, since 

(4.14) 

We may now use the solution (4.12) to calculate the vorticity distribution in the flux 
rope, and thus to find a matching condition that relates the inner to the outer solution. 
The magnetically induced vorticity w1 may be separated into inner and outer functions 
by writing 

6(<, z )  (inner), 

D( r ,  z )  (outer), 

(4.15 a )  

(4.15 b )  
with the boundary conditions 

6+0 ( t - . O ) ,  D = 0 ( r  = y ) ,  ( 4 . 1 6 ~ )  b )  

l im6 = limD, 
5- 10 r + O  

( 4 . 1 6 ~ )  

according to the principle of matched asymptotic expansions. Then, from (3.9), (3 

satisfies 

(4.17) 



Magnetic Jlux ropes and convection 253 

The Jacobian is easily evaluated from (4.12) and, since z is just a parameter in (4.17), 
that equation can be rewritten as 

(4.18) 

which has the solution 

r 6  = R;+~Q = B Q ~ ;  [A(z) 42 + i - exp ( - q 2 ) l  dpldz, (4.19) 

where A(z) is arbitrary. With r 6  given, the boundary-layer stream function $ is 
obtained from 

- (4.20) 

with the boundary condition fi = O(C2) as C+ 0. Clearly fi will consist of a particular 
integral gP obtained from (4.20) together with a complementary function 

fiC = $Ri1E2C(z), (4.21) 

where C(z) is arbitrary. The functions A(z),  C(z) andp(z) are determined by considering 
the outer solution. 

4.3. The outer solution 

Since the magnetic field is negligibly small away from the axis, the equations for 0 
take the form 

P ( r D )  = 0, I ( 4 . 2 2 ~ )  

D = 0 ( r  = y ,  z = 0, d) ,  limr0 = limr6. (4.226, c) 
r + o  (+a, 

It is easily shown that the most general expansion for rD near r = 0 is of the form 

rij - ~ ( z )  + P ( z )  r2lnr + y(z)  r2+ .. . 
- a+PR;11nR;~52+PRm1t21nE+yR;1E2+ ... . (4.23) 

(4.24) r 6  - - X a T ( i  Q d  + ~ ( z ) p [ z +  ...). 
2 Odz 

From (4.19), as E+oo 

Hence for correct matching we must have 

(4.25a) 

(4.25 b )  

and, since P = O(a) ,  1.41 = O(R;llnRi). Thus A may be neglected at leading order. 
The dominant behaviour of rD as r -+ 0 is thus rD N $Qxfdp/dz. Near r = 0, the stream 

(4.26) 
function $ must satisfy rD = -02$ = 

= ---X2Pr21nr+O(r2). Q d  (4.27) which implies that 

2d 2 xo Pldz+o(1)> 

4 Odz 

Note that it is not necessary to solve the full elliptic equation for $ t o  determine its 
leading-order behaviour near the axis. This is because the complement'ary function of 
(4.26), which can be fixed only by reference to the boundary conditions a t  r = y ,  is 
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O(r2) near r = 0 and so does not contribute to $ there at  leading order. The two- 
dimensional case is quite different (and much harder) as will be seen in § 5 below. 

Hence the limit of the outer solution as r --f 0 may be written as 

+-- I a’ [ f 2  In R i  - 5 2  In 61 Qxf R;l. (4.28) 
4 dz 

The problem can now be closed by requiring that 

Iim$ = Iimg. 

$ = gP + gC = gP + 4t2RG1C(z). 

r - 0  5 - t ~  

From (4.21), 

(4.29) 

(4.30) 

Now gP cannot match the term proportional to 5 2  In R i  since In RL does not appear 
in the asymptotic expansion for large f ;  of the inner solution. Hence f i p  matches the 
term proportional to 52lnc while gC matches the other term, so that 

C(z) = &Qxiln Rkdpldz .  (4.31) 

This expression gives the contribution of $, to the vertical velocity on the axis, which 
is independent of r .  Since the vertical velocity corresponding to gP can only be of 
order Q, (4.31) gives the leading-order correction fi(z) to to  due to the magnetic field; 
hence f (2) can be determined as a function of Q and R,. 

4.4. Solution for the vertical velocity f (2) 

f = f o  + 4Qx;In Rkdpldz .  

A = Qxiln R i  

From (4.31) we have 

If we introduce the parameter 

we then have gAdp/dz = 22p - f , ,  p = 0 ( Z  = d) .  

(4.32) 

(4.33) 

(4.34) 

This equation is linear in p ,  a pleasant surprise in such a highly nonlinear analysis; 
it can easily be solved to give 

(4.35) la 2 
p ( z ;  A) = p p  ( Z z z l A )  f d y )  exp ( - Zy2/A) dy = f ( W Z .  

The solution (4.35) is finite at  z = 0. It can be shown that both f and dzfldz2 vanish a t  
z = 0, provided that fo and dzfo/dz2 also vanish there, so that the boundary conditions 
(2.13 a )  are satisfied. 

We can now indicate the conditions for the theory to be valid. It seems clear that 
the only condition necessary to carry through the analysis is that the flux rope be 
‘thin’, which means that the local magnetic Reynolds number i?, must be large. Now 
8, = O(R,  lpl ) and, since p = O(A-1) for large A, a necessary and sufficient condition 

(4.36) is that R, B A, or equivalently, 

This restriction is not very severe. 

Q < R,/lnR,. 

4.5. A particular model 

The results obtained so far apply to any temperature field in (4.3). For purposes of 
illustration it is convenient to select a particular 7 ( r )  that allows the problem to be 
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FIGURE 2. The function p ( z  ; A) (proportional to  the axial field B*) 
for (a) A = 0, ( b )  A = 5 and ( c )  A = 20 as a function of z. 

solved exactly. If we let d-tco, choose ~ ( r )  = Jo(r) and set y = 3.83171 ... so that 
Jl(y)  = 0, then 

Hence, from (4.35), 

0 = J,(r) e-z, f,(z) = $(9+ z )  ecZ. (4.37) 

p ( z ; A )  = & ( l + z - t A ) e - - ” + i & A ! l  (I)& - exp (t -+- y)  erfc [ ( : ) ‘ ( z + a ) ] .  (4.38) 

I n  figure 2, p ( z ;  A) is plotted as a function of z for various values of A. We can now find 
the magnetic field B* on the axis as a function of A. From (4.14) 

B*(z) = BOB, P ( Z )  xo A&P(z; A) (4.39) 

for fixed R,. Now, at a given value of z, p is a decreasing function of A for any,f, and, 
from (4.34), 

aplan - p p  (A+w),  aplan- to  ( A - ~ o ) .  (4.40) 

It follows immediately that there is a value A, of A, of order unity, for which 

ap/an + p p  = o. 

But this is precisely the condition that the field B* on the axis takes its maximum 
value as a function of A, from (4.39). The value of A, depends weakly on z ;  for z = 0 
and p given by (4.381, A, = 13-5 and the corresponding value of Q ,  from (4.33), is 

Qo = 13.5/(~glnRi) .  (4.41) 
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FIGURE 3. A*p(z; A)  (proportional to B*) as a function of A* 
(proportional t o  B,) for ( a )  z = 0, ( b )  z = 1 and ( c )  z = 2. 

So, in dimensional terms, the maximum value attained by B*, at z = 0, is 

B, f - “T3 R, (/cp, ’q)’, 
In R i  

from (2.161 and (4 .14 ) .  It follows that 

(4 .42)  

(4 .43 )  

This result confirms the estimate of B, obtained from the simplified model in 0 3 
and demonstrates that  B* does reach a local maximum at the transition from the 
kinematic to the dynamic regime. When the field is very weak, so that A +  0, in the 
kinematic regime, B*(O) = &RmBo but when A = A, the ratio B*(O)/B, f R,/39.6.  
Thus the vertical velocity on the axis is reduced to about half of its value in the ab- 
sence of a magnetic field; the flux rope is still thin when B* is a maximum but the 
counter-velocity fl is comparable with f,, as predicted in 0 3.  From (4 .39)  the ampli- 
fication factor B*/B,  a A*p(z; A), which is plotted as a function of A for various 
values of x in figure 3.  The value of A for which the maximum field occurs increases 
slowly with z ,  indicating that the Lorentz forces are less effective for larger values of z .  

Finally, the Ohmic dissipation rate can be obtained in terms of the function p .  
Since the current j = - r-lDZX, the total Ohmic dissipation is given by 

= ““1- B*2dz, (4.44) 
Y o  
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approximately. Therefore 0, like B*, reaches a maximum when QlnRiL = O(1). For 
large values of Q 

p = (4R)-I (9 + 32 + 3) e-z + O(AW), (4.45) 

so that B* N Q-4 and Q N Q-I for fixed z and R, as Q -+ co. The ratio of Q to the total 
viscous dissipation rate can be shown to  reach a maximum of order (In R;)-l and t,o 
become very small for large Q. Thus viscous dissipation is always more important than 
Ohmic dissipation while the flux rope is thin. 

This discussion shows the power of boundary-layer techniques in tackling the 
axisymmetric Oberbeck problem. The corresponding Rayleigh-BBnard problem is 
less tractable but yields results in the low PBclet number regime (Proctor & Galloway 
1978). These thin flux rope solutions help to elucidate the vexed question of subcritical 
instabilities (cf. Busse 1975). Moreover, a similar treatment can be used to investigate 
convection in rotating systems, where j A B is replaced by u A o and the poloidal 
vorticity is concentrated near the axis. 

5. Two-dimensional convection 
The interaction between flux sheets and two-dimensional convection can be de- 

scribed by analogy with the three-dimensional problems with which this paper is 
primarily concerned. We introduce Cartesian axes with the z axis vertical and suppose 
that convection occiirs in rolls of width L parallel to the y axis and that there is no 
variation in the y direction. Then the magnetic flux is concentrated into sheets in 
regions of rising or falling fluid between the rolls, and these sheets will be similar if 
the thermal boundary conditions are symmetrical. 

I n  the kinematic regime the flux is confined to sheets of thickness eL,  where e N R L ~ ,  
and the peak field B* N RkbB,. If Re < 1 the vorticity has only a y component w 
which satisfies 

instead of (3.6). To estimate the maximum value of B* we follow the procedure of $3, 
scaling lengths with respect to L. First we solve the one-dimensional problem for the 
Green's function w(x) given by 

with a vertical velocity v (x )  and a stream function $(x) such that w = -dv/dx, 
v = d$/dx and + ( O )  = $(1) = w(0)  = w ( 1 )  = 0. Then 

v = v(0)  = -Q€, (5.3) 

while 

and 

3V(1 -e)x/e (0 < x < e), 

3V(l-x) (6 < x < 1 )  

V[l -# ( l  -E)X2/€] (0 < x 6 €), 
v = {  

F ' [ l + $ ~ - 3 ~ ( 1 - 4 ~ ) ]  (C < x < 1). 

(5.4a) 

(5.4b) 

(5.5a) 

(5.5b) 

Thus the maximum vorticity w* = 3V and, from ( 5 . 5 ) ,  the velocity remains of the 
same order across the entire cell, so that v(1) = - QV. The two- and three-dimensional 
problems have quite different solutions. The axis of a cylinder is singular; the cell 
boundaries are not, and so no logarithmic terms appear, while the motion extends 
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over the entire region instead of being confined to the vicinity of the flux rope. More- 
over, the relationship between w* and V depends only on the cell width and not on 6. 

The transition to a dynamic regime can be located as before. Kinematic amplifi- 
cation is halted when the magnetically driven counter-circulation becomes com- 
parable with the thermally driven velocity. Hence the maximum field B, satisfies 

(B2,lPPo~)~ u ( 5 4  

and so BL R ; * ~ ~ B : .  (5.7) 

This field is produced when Bg N ,upotyR~ and Q N Rk. Thus the maximum field is 
less than that for axisymmetric convection by a factor of order (In R,,/Ri)*, and 
occurs a t  a higher value of Q. 

A proper two-dimensional treatment, on the lines of $ 4 ,  can be pursued for the 
Oberbeck problem with fluid rising into a half-space at  x = 0 and similar boundary 
conditions a t  x = 0, L and z = 0. Once again we adopt a similar scaling and introduce 
a flux function x and a stream function $ such that B = ( - a x / a z ,  0 ,  axlax) and 
u = ( -  a$/&, 0, a$/ax). Then we define a stretched co-ordinate 6 = R i r  for the 
boundary layer at  x = 0 and assume that the stream function satisfies 

$ + Xfk) = R&f (2) (5.8) 

near x = 0. In the boundary layer the induction equation reduces to 

It can be shown (cf. Proctor 1975) that this equation has a solution 

(5.10) 

The corresponding velocit'y u1 can in principle be calculated by the procedure 
described in 3 4. Inner and outer solutions 6.3 and 2, may be obtained for the vorticity 
and the stream function $ in the outer region satisfies the elliptic equation 

v2$ = -&  (5.11) 

analogous to (4.26). Now the axisymmetric problem could be treated successfully 
because the magnetically driven flow was confined to the region near the axis, and 
the logarithmic term ensured that the particular integral dominated the complemen- 
tary function as r --f 0 in (4.26). Unfortunately the velocity extends across the whole 
cell in two dimensions and so it becomes necessary to solve (5.11) over the entire 
domain and to satisfy boundary conditions a t  x = 1 .  The equation analogous to (4.34) 
for the velocity at x = 0 cannot be solved analytically and so there is no point in 
presenting all the details here. 

6. Discussion 
The boundary-layer analysis in $ 4  demonstrated that as the average field Bo is 

increased the peak field B* remains proportional to B, throughout the kinematic 
regime and then reaches a local maximum B, at the transition from the kinematic to 
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the dynamic regime. Thereafter B* declines until the boundary-layer approximation 
ceases to be valid and the flux rope expands to  fill tjhe entire cell. I n  the Oberbeck 
problem, for sufficiently large Q,  the field is then scarcely distorted by the motion; 
in the Rayleigh-Bknard probleni convection is eventually suppressed. These results 
confirm the estimate of the maximum field B, that was provided by the simplified 
model of 9 3. Indeed, B,,, can be estimated by dimensional arguments if the ratio of 
the vorticity to  the velocity is known. 

For the axisymmetric problem, suppose that the cell radius r ,  and the layer depth 
d are comparable and set L = r,. Then flux is concentrated into a rope of radius 
E - R;*L a t  the axis. I n  the flux rope there is a balance between the generation of 
vorticity by the magnetic torque and viscous dissipation [cf. (3.6)] such that 

p, v w l / ~ 2  N B*2/pEL. (6.1) 

Now the magnetically generated vorticity w1 is related to the corresponding velocity 

B*2L2 In R,, 
from (3.13). Therefore v1 - - B*2 e 2 l n ( ~ / E )  - 

PPOV IUPoVRn, 
(6.3) 

At the transition from the kinematic to the dynamic regime, when B* = B,,, vul is 
comparable wit,h iY, the velocity in the absence of any magnetic field, and so 

B:, - (5) (6.4) 

For specific problems the velocity U can be related to the thermal driving force, 
expressed in terms of t,he Rayleigh number defined in (2.15). Thus, from (4.1),  

for the Oberbeck problem and so 

For the Rayleigh-Bknard problem a t  large p ,  

u R+K/L ( 6 . 7 )  

when R 9 1 (Jones et u.Z. 1976);  then 

Galloway & Moore (1 978) discuss power laws relating B* to B, in the dynamic regime 
and compare them with numerical results. 

Analogous arguments can be applied to two-dimensional convection in rolls of 
xidth L, where w1 - v l /L .  Instead of (6.4), we have 
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For the Oberbeck problem, 
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(6.10) 

from (6.5) and (6 .9)  (Peckover & Weiss 1978); for t’he Rayleigh-BBnard problem, from 
(6.7) and (6 .9) ,  

(6.11) 

From (2.2) and (2.3) i t  follows that the global rate of working by the buoyancy force 
is equal to the sum of the Ohmic and viscous dissipation rates. Obviously kinematic 
amplification of the field cannot persist beyond the value of B, for which the rate of 
Ohmic dissipation in the flux rope would become comparable with the overall rate of 
viscous dissipation in the absence of a magnetic field. Thus an upper bound to the 
peak field B* can be obtained by equating the Ohmic dissipation rate C2 to the viscous 
dieeipation rate CD. I n  an axisymmetric cell 

R - ,ur,j2ed N p-lqB*Zd (6.12) 

and is independent of e,  while CD N p,11U2d. These two dissipation rates are equal when 
B* N (lnR,)* B,. Thus the magnetic torque limits concentration of flux before Ohmic 
dissipation affects the large-scale circulationin the cell. (In fact, B* reaches a maximum 
when C2 is comparable with the viscous dissipation rate for the magnetically driven 
flow ul.) I n  two dimensions, however, 

!2 N ,uqj%d2 N ,i.-lB*2d2/s (6.13) 

and so Q = @ when B* N B,: Ohmic dissipation becomes important as B* reaches 
its maximum value, and convection is impeded throughout the cell. Once again, the 
difference between the axisymmetric and the tmo-dimensional configuration is caused 
by singular behaviour at the axis in the former. I n  a cylindrical cell motion can be 
excluded from a central flux rope without appreciably affecting the overall motion 
but in a two-dimensional roll the velocity is everywhere reduced. 

More generally, in three dimensions, the convection cells make up a tesselated 
pattern I n  a steady stat’e magnetic flux is concentrated into sheets between the cells, 
and ropes located at  their centres and their corners. We believe that almost all the 
P,ux is confinecl to the ropes; even if there is as much flux in the sheets as in the ropes 
the dynamical effect of the former is relatively unimportant (as was shown in Q 5 
&hove). Hence our results for axisymmetric flux ropes may have a much more general 
validjty . 

Unless R, is enormous the maximum field can be adequately estimated simply by 
equating the viscous and Ohmic dissipation rates. We have attempted to  apply this 
theory to the formation of intense magnetic fields in the outer layers of the sun 
(Galloway, Proctor & Weiss 1977). I n  the solar convection zone v and 7 must be re- 
placed by turbulent diffusivities 3 and i j ;  the magnetic Reynolds number R, = ULIf  
varies between 1 0 2  and 104 and 

B,  - (i j / i j) i  B, (6.14) 

approximately. We expect that 4, the effective diffusivity in the flux rope, is less than 
z, t’he eddy viscosity in the field-free region, and the fields observed in the photosphere 
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are indeed much greater than the local equipartition value. However, a more elaborate 
theory of conipressible magnetoconvection is needed before these intense fields can 
be properly explained. 

Guided by the results of numerical experiments, we have been able to describe the 
transition from the kinematic to the dynamic regime and to estimate the strongest 
fields that can be sustained by convection in a Boussinesq fluid. We expect these 
qualitative results to be valid in the anelastic approximation (e.g. Spiegel 1971) too. 
It is also possible to study fields well into the dynamic regime and appropriate power 
laws can be found (Galloway & Moore 1978). The nonlinear Rayleigh-BBnard problem 
presents formidable analytical difficulties and many features of the dynamic regime 
are poorly understood, but there is scope for analytical progress using the techniques 
developed in this paper. 

We are grateful to S. Childress for encouraging us to do the boundary-layer analysis, 
and to G. K. Batchelor, F. H. Busse and R. S. Peckover for comments and suggestions. 
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